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In this talk...

• Σ = {a, b, . . .} is a finite alphabet with |Σ| ≥ 2

• X = {X ,Y ,Z . . .} is an infinite set of variables

• |w | is the length of a word w

• wn = w w . . . w︸ ︷︷ ︸
n times

• v is a factor (substring) of w if w = uvx for some u, x

• A (QF) formula is a Boolean combination of atoms of some
specified type(s)

• A (QF) theory is a set of all formulas containing atoms of some
specified type(s)
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Word Equations

X ab Y c
.

= Z X c Y

Terminal Symbols from Σ

Variables from X

• α .
= β where α, β ∈ (X ∪ Σ)∗

• True for h : X → Σ∗ if both sides become identical under h

• Let WE denote the set of all formulas whose atoms are word
equations
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Regular Constraints

X ∈ (ab | ba | a)∗

Regular LanguageVariable from X

• X ∈ L where L can be given as a finite automaton or regular
expression

• True for h : X → Σ∗ if h(X ) ∈ L

• Let WE + REG denote the set of all formulas whose atoms are
word equations or regular constraints
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Length Constraints

|X | = |Y |

Variables from X

• True for h : X → Σ∗ if |h(X )| = |h(Y )|
• Let WE + LEN denote the set of all formulas whose atoms are

word equations or length constraints

• Let WE + REG + LEN denote the set of all formulas whose
atoms are word equations, regular constraints or length
constraints
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Summary of Theories

Theory ¬,∨,∧ α
.

= β x ∈ L |X | = |Y |
WE

WE + REG

WE + LEN

WE + REG + LEN

• We can model |X | > |Y | as |X | = |Z | ∧ Z
.
= YW ∧ ¬(W .

= ε)

• Linear combinations like 2|X |+ 3|Y |+ 1 = |Z | can be modelled e.g. as
W

.
= XXYYYa ∧ |W | = |Z |
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What Do We Want to Know?

• Complexity/computability/algorithmic

◦ Satisfiability
◦ When can a given formula be rewritten in a smaller or

alternative theory?

◦
...

• Design decisions

◦ Understanding expressivity/complexity trade-offs
◦ Search heuristics for satisfying assignments

• Expressivity

◦ Which properties can(not) be expressed in a theory?
◦ Pumping/structural properties for expressible

relations/languages
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Expressivity
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Expressible Languages and Relations

Definition (Adapted from Karhumäki, et al. 2000)

Let ϕ be a formula and S = {X1,X2, . . . ,Xk} be a subset of the
variables occurring in ϕ. Then the relation expressed by S in ϕ is
the set:

L(ϕ,S) = {(h(X1), h(X2), ..., h(Xk )) | h satisfies ϕ}

A relation R is expressible in a theory T if there exists a formula
ϕ ∈ T and S such that R = L(ϕ,S).

E.g. {w ∈ Σ∗ | |w | even} is expressible in WE + LEN via X in
X

.
= YZ ∧ |Y | = |Z |
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A Natural Hierarchy

WE

WE + LENWE + REG

WE + REG + LEN

All R.E. Languages
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Inexpressibility in WE

Theorem (Büchi, Senger 1990, Karhumaki, Mignosi,
Plandowski 2000)

The languages anbn and (a | b)∗c are not expressible in WE.

• anbn is expressed by X in the WE + LEN-formula:

X
.

= YZ ∧ Ya
.

= aY ∧ Zb
.

= bZ ∧ |Y | = |Z |.

• (a | b)∗c is expressed by X in the WE + REG-formula:

X ∈ (a | b)∗c .
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A Convenient Normal Form

Lemma (Folklore)

A language/relation is expressible in WE if and only if it is
expressible by a single positive word equation α

.
= β.
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Filling the Positions and Unanchored Letters

W X Y Z X a
.

= a Z Y cc W ca Y

h(W ) h(X ) h(Y ) h(Z ) h(X ) a

a h(Z ) h(Y ) c c h(W ) c a h(Y )

a a a b b c a c c a a a b b c a c a

a a a b b c a c c a a a b b c a c a

β

h(β)

h(α)

α

This leads to equivalence classes of positions which must have
the same letter
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Filling the Positions and Unanchored Letters

W X Y Z X a
.

= a Z Y cc W ca Y
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α

This leads to equivalence classes of positions which must have
the same letter
Positions occupying the same part of a variable must have the
same letter
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Filling the Positions and Unanchored Letters

W X Y Z X a
.

= a Z Y cc W ca Y

h(W ) h(X ) h(Y ) h(Z ) h(X ) a

a h(Z ) h(Y ) c c h(W ) c a h(Y )

a a a b b c a c c a a a b b c a c a

a a a b b c a c c a a a b b c a c a

β

h(β)

h(α)

α

This leads to equivalence classes of positions which must have
the same letter

Some equivalence classes must take the value dictated by a
constant from the equation (anchored)
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Filling the Positions and Unanchored Letters

W X Y Z X a
.

= a Z Y cc W ca Y

h(W ) h(X ) h(Y ) h(Z ) h(X ) a

a h(Z ) h(Y ) c c h(W ) c a h(Y )
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β

h(β)

h(α)

α

This leads to equivalence classes of positions which must have
the same letter

Others have no positions aligned to a constant, and can take
any value (unanchored)
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Synchronising Factorisation Schemes

• A factorisation scheme provides a unique way of splitting
any given word u ∈ Σ+ into factors u = u1 · u2 · . . . · uk .

• It is synchronising if the factorisations of two overlapping
words always align after a constant number of factors.

up+1 up+2 · · · uq−1ut . . . up−1 uq . . . us· · · · · ·

v`+1 v`+2 · · · vr−1v1 . . . v` vr . . . vk

v

u

At most c factors
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Filling the Positions and Unanchored Factors

• Dividing a word into runs of individual letters is synchronising

• We can generalise the filling the position methods to work for
the factors of a synchronising factorisation scheme

• “Most” factors will line up nicely, but some will still overlap

h(W ) h(X ) h(Y ) h(Z ) h(X ) a

a h(Z ) h(Y ) c c h(W ) c a h(Y )

a a a b b c a c c a a a b b c a c a

a a a b b c a c c a a a b b c a c a

β

h(β)

h(α)

α
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Filling the Positions and Unanchored Factors

• It is still possible for some factors to be “unanchored”,
meaning we can freely swap them to obtain other solutions

h(W ) h(X ) h(Y ) h(Z ) h(X ) a

a h(Z ) h(Y ) c c h(W ) c a h(Y )

a a a b b c a c c a a a b b c a c a

a a a b b c a c c a a a b b c a c a

β

h(β)

h(α)

α
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Existence of Unanchored Factors

Lemma (Karhumaki, Mignosi, Plandowski 2000, adapted)

Let F be a synchronising factorisation scheme and let E be a word
equation. There is a constant CE ,F depending only on F and |E |
such that if h is a solution to E and h(X ) has more than CE ,F

distinct factors in its F-factorisation, then at least one is
unanchored.
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Showing Inexpressibility: WE (Karhumäki et al. 2000)

(a|b)∗c

(1) Choose a “good” factorisation scheme F
E.g. blocks of letters, so abbbaabaaa→ a bbb aa b aaa

(2) Assume L is expressed by X in E . Pick a word w ∈ L such that w
has more than CE ,F distinct factors w.r.t. F
E.g. aba2b2a3b3 . . . anbnc for n > CE ,F

(3) Take any solution h such that h(X ) = w . At least one of the factors
in w will be “unanchored” and we can freely replace it with any
word u ∈ Σ∗

E.g. swapping ai for c

(4) If we chose w , F and u well, we get a new solution g such that
g(X ) = w ′ for some w ′ /∈ L (a contradiction)
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Showing Inexpressibility: WE (Karhumäki et al. 2000)

h(α)

h(β)

. . .

. . .

ai

ai

. . .

. . .

ai

ai

. . .

. . .

ai

ai

. . .

. . .

All occurrences of ai line up exactly
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Showing Inexpressibility: WE (Karhumäki et al. 2000)

g(α)

g(β)

. . .

. . .

c

c

. . .

. . .

c

c

. . .

. . .

c

c

. . .

. . .

So we can swap ai for c without affecting the equality of both sides
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Showing Inexpressibility: WE + LEN

Adapting this approach to work for WE + LEN is straightforward,
we just need to preserve the lengths when swapping factors
E.g. swapping ai for c i

Adapting the same approach to work for WE + REG requires a bit
more care, but can be done by an involved pumping argument.

a1 a2 a3 a4 a5 a6 a7 a8 a9

q qqinit qfinal

h(x)

a1 a2 a3 a4 a5 a3 a4 a5 a6 a7 a8 a9

q q qqinit qfinal

h(x)

Combining Word Equations, Regular Languages and Arithmetic: (Some of) What We Know and What We Don’t Joel D. Day



21/44

Showing Inexpressibility: WE + LEN

Adapting this approach to work for WE + LEN is straightforward,
we just need to preserve the lengths when swapping factors
E.g. swapping ai for c i

Adapting the same approach to work for WE + REG requires a bit
more care, but can be done by an involved pumping argument.

a1 a2 a3 a4 a5 a6 a7 a8 a9

q qqinit qfinal

h(x)

a1 a2 a3 a4 a5 a3 a4 a5 a6 a7 a8 a9

q q qqinit qfinal

h(x)

Combining Word Equations, Regular Languages and Arithmetic: (Some of) What We Know and What We Don’t Joel D. Day



22/44

Separating the Theories

WE + REG + LEN

WE + REG

WE + LEN

WE

{a, b}∗c

{ucv | u, v ∈ {a, b}∗ ∧ |u| = |v |}

{u | |u| even}

{uav |u, v ∈Σ∗

∧ |u| = |v |}
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Showing Inexpressibility: WE + LEN + REG

Unfortunately, preserving lengths and pumping are incompatible
when swapping out factors in a solution

Theorem (Day, Ganesh, Grewal and Manea 2022)

There exist recursively enumerable languages which are not
expressible in WE+REG+LEN.

Idea: Pump the “width” of the language (# of words of length n)
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A Convenient Normal Form

We can rewrite any WE + REG + LEN formula expressing a given
language into the form:∨

1≤i≤N

(
Ei ∧ ψlen

i ∧ ψ
reg
i

)
where each Ei is a single word equation, ψleni

is a Boolean
combination of length constraints and ψreg

i is a conjunction of
regular constraints
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Inexpressibility for WE + REG + LEN

Suppose h is a solution to an equation E which satisfies some
length constraints ψlen and regular constraints given by AX ,AY .

AX :

AY :

h(X ) : h(Y ) :

r s tb

a

a

b

a

p q

a, b

a, b

a b b a b a a a a b a a a b a a a b a b

u

p q p p q q s r s t
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Inexpressibility for WE + REG + LEN

Suppose u = aba is our unanchored factor. We can swap u for
v = aaa while still satisfying all constraints.

AX :

AY :

h(X ) : h(Y ) :

r s tb

a

a

b

a

p q

a, b

a, b

a b b a b a a a a b a a a b a a a b a b

u

p q p p q q s r s t
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Inexpressibility for WE + REG + LEN

• Let Q be the set of pairs of states for which an occurrence of
u starts/ends (Q = {(q, p), (p, q), (r , s)} in the previous
example)

• The set of words v which start/end in the same combinations
of states as u is a regular language RQ which can be computed
from the original automata using the product construction.

• Swapping u for some v ∈ RQ means the equation and regular
constraints remain satisfied.
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A P(l)umping Argument

• We construct a R.E. language L so that each word ∈ L
contains k near-copies of some word w ∈ {a, b}k , subject to
different encodings over the same alphabet a, b, c, d ,@, $. We
“pad” each copy so it has length k2 + 22

k
.

• The words in L have lengths k3 + k22
k

for each k ∈ N.

• Since there are 2k choices of w for each k, there are
Θ(log(n)) words of length n in L .

w1 w2 w3 . . . wk

k2 + 22
k

k2 + 22
k

k2 + 22
k

k2 + 22
k
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A P(l)umping Argument

• Suppose (for contradiction) that L is expressible by some
formula ϕ from WE + LEN + REG.

• The encoding means we can design a synchronising
factorisation scheme which divides a word into its “copies” wi .

• For all k large enough, at least one copy wi of w is
“unanchored”. We associate each unanchored copy with the
set Q of pairs of states it’s occurrences start/end in w.r.t. to
the regular constraints.
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• The number of different sets Q is bound by aconstant Creg

depending only on ϕreg

• For sufficiently large k, there are at least 2k

Creg
= Ω(2k ) words

of length k2 + 22
k

whose occurrences start/end in pairs from
Q.

• In other words, RQ has at least Ω(2k ) words of length Θ(22
k
).
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• Properties of regular languages dictate that the width of RQ

cannot be logarithmic, so RQ must have Ω(22
k
) words of

length Θ(22
k
).

• Since this means that for long-enough words in L, there is an
unanchored factor which may be swapped for a near-linear
number of alternatives while still satisfying the formula ϕ.
This means that L contains a near-linear number of words of a
given length.

• A contradiction, so L is not expressible.
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Undecidability From Above
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Generalising WE + REG + LEN

• It is a long-standing open problem if satisfiability is decidable
for WE + LEN or WE + REG + LEN.

• Let WE + CF denote the set of formulas whose atoms are word
equations or X ∈ L where L is a context free language (CFL)

• Then WE + CF is powerful enough to model length
constraints and regular constraints, but unfortunately
satisfiability is undecidable

Theorem

Every R.E. language is expressible in WE + CF.
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Generalising WE + REG + LEN

• What about languages between CFL
and REG?

• We want a decidable intersection
problem

• And to have enough “memory” to
compare lengths

• Visibly Pushdown Languages (VPLs)
fit the bill...
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Visibly Pushdown Languages

• Partition Σ into Σcall , Σreturn and Σinternal .

• A language L ⊆ Σ∗ is a VPL if it is accepted by a pushdown
automaton which

◦ pushes when reading a letter from Σcall ,
◦ pops when reading a letter from Σreturn,
◦ leaves the stack unchanged when reading a letter from Σinternal ,

• VPLs are closed under intersection, union, complement, ...
and have decidable emptiness, equivalence, inclusion problems
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Generalising WE + LEN + REG

Let WE + VPL denote the set of formulas whose atoms are word
equations or X ∈ L where L is a visibly pushdown language

Theorem (Day, Ganesh, Grewal and Manea 2022)

All R.E. languages are expressible in WE + VPL.

Corollary (Day, Ganesh, Grewal and Manea 2022)

Satisfiability for WE + VPL is undecidable.
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Decision Problems
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Rewriting Problems: WE + REG + LEN→ WE + REG

Theorem (Day, Ganesh, Grewal, Manea 2022)

The following problem is undecidable:

Given a WE + REG + LEN-formula ϕ and a non-empty subset S of
the variables of ϕ, does there exist a WE + REG-formula ψ such
that the relations expressed by S in ϕ and ψ are the same?
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Rewriting Problems: WE + REG + LEN→ WE + LEN

Open Problem

Is the following problem is decidable?

Given a WE + REG + LEN-formula ϕ and a non-empty subset S of
the variables of ϕ, does there exist a WE + LEN-formula ψ such
that the relations expressed by S in ϕ and ψ are the same?
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Rewriting Problems: WE→ REG

Theorem (Day, Ganesh, Grewal, Manea 2022)

The following problem is undecidable:

Given a WE-formula ϕ and a variable X occurring in ϕ is the
language expressed by X in ϕ regular?
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Rewriting Problems: REG→ WE

Open Problem

Is the following problem decidable?

Given a regular language L, is L expressible in WE?
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Rewriting Problems: REG→ WE

A language L is thin if there is some word u which does not occur
as a factor of any word in L.

Theorem (Day et al 2023)

Let e be a regular expression which does not contain ∅ and such
that L(e) is thin. Then L(e) is expressible in WE if and only if, for
every subexpression of the form f ∗ of e, there exists w such that
L(f ) ⊆ {w}∗.

Corollary (Day et al 2023)

It is decidable whether a thin regular language is expressible in WE.
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Open Problem

Open Problem

Are languages expressible in WE + REG + LEN decidable? Are they
Context Sensitive?
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Thank You!
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