Combining
Word Equations, Regular Languages and Arithmetic: (Some of) What We Know and What We Don't

Joel D. Day, Matthew Konefal, Vijay Ganesh, Nathan Grewal and Florin Manea

In this talk...

- $\Sigma=\{a, b, \ldots\}$ is a finite alphabet with $|\Sigma| \geq 2$
- $\mathcal{X}=\{X, Y, Z \ldots\}$ is an infinite set of variables
- $|w|$ is the length of a word w
- $w^{n}=\underbrace{w w \ldots w}_{n \text { times }}$
- v is a factor (substring) of w if $w=u v x$ for some u, x
- A (QF) formula is a Boolean combination of atoms of some specified type(s)
- A (QF) theory is a set of all formulas containing atoms of some specified type(s)

Word Equations

- $\alpha \doteq \beta$ where $\alpha, \beta \in(X \cup \Sigma)^{*}$
- True for $h: \mathcal{X} \rightarrow \Sigma^{*}$ if both sides become identical under h
- Let WE denote the set of all formulas whose atoms are word equations

Regular Constraints

- $X \in L$ where L can be given as a finite automaton or regular expression
- True for $h: \mathcal{X} \rightarrow \Sigma^{*}$ if $h(X) \in L$
- Let WE + REG denote the set of all formulas whose atoms are word equations or regular constraints

Length Constraints

Variables from \mathcal{X}

- True for $h: \mathcal{X} \rightarrow \Sigma^{*}$ if $|h(X)|=|h(Y)|$
- Let WE + LEN denote the set of all formulas whose atoms are word equations or length constraints
- Let WE + REG + LEN denote the set of all formulas whose atoms are word equations, regular constraints or length constraints

Summary of Theories

Theory	\neg, \vee, \wedge	$\alpha \doteq \beta$	$x \in L$	$\|X\|=\|Y\|$
WE	\checkmark	\checkmark		
WE + REG	\checkmark	\checkmark	\checkmark	
WE + LEN	\checkmark	\checkmark		\checkmark
WE + REG + LEN	\checkmark	\checkmark	\checkmark	\checkmark

- We can model $|X|>|Y|$ as $|X|=|Z| \wedge Z \doteq Y W \wedge \neg(W \doteq \varepsilon)$
- Linear combinations like $2|X|+3|Y|+1=|Z|$ can be modelled e.g. as $W \doteq X X Y Y Y a \wedge|W|=|Z|$

What Do We Want to Know?

- Complexity/computability/algorithmic
- Satisfiability
- When can a given formula be rewritten in a smaller or alternative theory?
- Design decisions
- Understanding expressivity/complexity trade-offs
- Search heuristics for satisfying assignments
- Expressivity
- Which properties can(not) be expressed in a theory?
- Pumping/structural properties for expressible relations/languages

Expressivity

Expressible Languages and Relations

Definition (Adapted from Karhumäki, et al. 2000)

Let φ be a formula and $S=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ be a subset of the variables occurring in φ. Then the relation expressed by S in φ is the set:

$$
L(\varphi, S)=\left\{\left(h\left(X_{1}\right), h\left(X_{2}\right), \ldots, h\left(X_{k}\right)\right) \mid h \text { satisfies } \varphi\right\}
$$

A relation R is expressible in a theory \mathfrak{T} if there exists a formula $\varphi \in \mathfrak{T}$ and S such that $R=L(\varphi, S)$.
E.g. $\left\{w \in \Sigma^{*}| | w \mid\right.$ even $\}$ is expressible in $W E+L E N$ via X in

$$
X \doteq Y Z \wedge|Y|=|Z|
$$

A Natural Hierarchy

Inexpressibility in WE

Theorem (Büchi, Senger 1990, Karhumaki, Mignosi, Plandowski 2000)

The languages $a^{n} b^{n}$ and $(a \mid b)^{*} c$ are not expressible in WE.

- $a^{n} b^{n}$ is expressed by X in the WE + LEN-formula:

$$
X \doteq Y Z \wedge Y a \doteq a Y \wedge Z b \doteq b Z \wedge|Y|=|Z|
$$

- $(a \mid b)^{*} c$ is expressed by X in the WE + REG-formula:

$$
X \in(a \mid b)^{*} c
$$

A Convenient Normal Form

Lemma (Folklore)

A language/relation is expressible in WE if and only if it is expressible by a single positive word equation $\alpha \doteq \beta$.

Filling the Positions and Unanchored Letters

$$
W X Y Z X a \doteq a Z Y \text { cc } W \text { ca } Y
$$

α	$h(W)$				$h(X)$		$h(Y)$				$h(Z)$				$h(X)$					a
$h(\alpha)$	a	a	$a b$	b	$c \quad a$	c		c	a			a	b	b		c	a	c		a
$h(\beta)$	a		$a \quad b$	b	c a	c		c	a	a		a	b	b		c	a			a
β			$h(Z)$		$h(Y)$							W)					a		Y	

Filling the Positions and Unanchored Letters

$$
W X Y Z X a \doteq a Z Y c c W c a Y
$$

α			(W)			$h(X)$			Y)		$h(Z)$					(X)		a
$h(\alpha)$	a	a	$a \quad b$	b	c	a	c	c	a	a	a	b	b			a	c	
$h(\beta)$	a	a	$a \quad b$	b	c	a	c	c	a	a	a	b	b		c	a	c	a
			$h(Z)$			(Y) !					$h(W)$							

Vertically aligned positions must have the same letter

Filling the Positions and Unanchored Letters

$$
W X Y Z X a \doteq a Z Y c c W c a Y
$$

α	$h(W)$				$h(X)$			$h(Y)$			$h(Z)$					$h(X)$				
$h(\alpha)$	a	a	$a \quad b$	b	c	a	c	c		a	a	a	b	b	c		a	c		a
$h(\beta)$	a	a	b	b	c	a	c	c		a	a	a	b	b	c		a	c	a	a
			$h(Z)$									(W)								

Positions occupying the same part of a variable must have the same letter

Filling the Positions and Unanchored Letters

$$
W X Y Z X a \doteq a Z Y \text { cc } W \text { ca } Y
$$

This leads to equivalence classes of positions which must have the same letter

Filling the Positions and Unanchored Letters

$$
W X Y Z X a \doteq a Z Y \text { cc } W \text { ca } Y
$$

α	$h(W)$				$h(X)$			$h(Y)$			$h(Z)$				$h(X)$					a
$h(\alpha)$	a	a	$a \quad b$	b	c	a	c	c		a	a	a	b	b		c	a	c		a
$h(\beta)$	a	a	$a \quad b$	b	c	a	c	c		a	a	a	b	b		c	a	c		a
β	a		$h(Z)$									(W)								

This leads to equivalence classes of positions which must have the same letter

Filling the Positions and Unanchored Letters

$$
W X Y Z X a \doteq a Z Y \text { cc } W \text { ca } Y
$$

α	$h(W)$				$h(X)$				$h(Y)$ i			$h(Z)$				$h(X)$					a
$h(\alpha)$	a	a	$a \quad b$	b	c	a		c	c	a			a		b		c	a	c	c	a
$h(\beta)$	a		$a \quad b$	b	c	a		c	c	a		a	a		b		c	a		c	a
β			$h(Z)$										(W)								

This leads to equivalence classes of positions which must have the same letter

Filling the Positions and Unanchored Letters

$$
W X Y Z X a \doteq a Z Y \text { cc } W \text { ca } Y
$$

α	$h(W)$				$h(X)$			$h(Y)$			$h(Z)$				$h(X)$					a
$h(\alpha)$	a	a	$a \quad b$	b	c	a	c	c		a	a	a	b	b		c	a	c		a
$h(\beta)$	a	a	$a \quad b$	b	c	a	c	c		a	a	a	b	b		c	a	c		a
β	a		$h(Z)$									(W)								

This leads to equivalence classes of positions which must have the same letter

Filling the Positions and Unanchored Letters

$$
W X Y Z X a \doteq a Z Y \text { cc } W \text { ca } Y
$$

α	$h(W)$				$h(X)$			$h(Y)$			$h(Z)$			$h(X)$				a
$h(\alpha)$	a	a	$a \quad b$	b	c	a	c	c	a	a	a	b	b	c	a	c		a
$h(\beta)$	a	a	$a \quad b$	b	c	a	c	c	a	a	a	b	b	c	a	c		a
β			$h(Z)$								W)							

This leads to equivalence classes of positions which must have the same letter

Filling the Positions and Unanchored Letters

$$
W X Y Z X a \doteq a Z Y \text { cc } W \text { ca } Y
$$

α	$h(W)$				$h(X)$			$h(Y)$			$h(Z)$			$h(X)$				a
$h(\alpha)$	a		$a \quad b$	b	c	a	c	c	a		a	b	b	c	a	c		a
$h(\beta)$	a	a	$a \quad b$	b	c	a	c	c	a		a	b	b	c	a	c		a
β	a		$h(Z)$								$h(W)$							

This leads to equivalence classes of positions which must have the same letter

Filling the Positions and Unanchored Letters

$$
W X Y Z X a \doteq a Z Y \text { cc } W \text { ca } Y
$$

Some equivalence classes must take the value dictated by a constant from the equation (anchored)

Filling the Positions and Unanchored Letters

$$
W X Y Z X a \doteq a Z Y \text { cc } W \text { ca } Y
$$

Others have no positions aligned to a constant, and can take any value (unanchored)

Filling the Positions and Unanchored Letters

$$
W X Y Z X a \doteq a Z Y \text { cc } W \text { ca } Y
$$

Others have no positions aligned to a constant, and can take any value (unanchored)

Synchronising Factorisation Schemes

- A factorisation scheme provides a unique way of splitting any given word $u \in \Sigma^{+}$into factors $u=u_{1} \cdot u_{2} \cdot \ldots \cdot u_{k}$.
- It is synchronising if the factorisations of two overlapping words always align after a constant number of factors.

Filling the Positions and Unanchored Factors

- Dividing a word into runs of individual letters is synchronising
- We can generalise the filling the position methods to work for the factors of a synchronising factorisation scheme
- "Most" factors will line up nicely, but some will still overlap

Filling the Positions and Unanchored Factors

- It is still possible for some factors to be "unanchored", meaning we can freely swap them to obtain other solutions

α	$h(W)$					$h(X)$		$h(Y)$				$h(Z)$				$h(X)$				a
$h(\alpha)$	a	a		b		c a	c	c		a	a			b	b	c	a	c	c	a
$h(\beta)$	a	a		b	b	c a	c	c		a	a	a		b	b	c	a			a
β						$h(Y)$						$h(W)$								

Existence of Unanchored Factors

Lemma (Karhumaki, Mignosi, Plandowski 2000, adapted)

Let \mathfrak{F} be a synchronising factorisation scheme and let E be a word equation. There is a constant $C_{E, \mathfrak{F}}$ depending only on \mathfrak{F} and $|E|$ such that if h is a solution to E and $h(X)$ has more than $C_{E, \mathfrak{F}}$ distinct factors in its \mathfrak{F}-factorisation, then at least one is unanchored.

Showing Inexpressibility: WE (Karhumäki et al. 2000)

$(a \mid b)^{*} c$
(1) Choose a "good" factorisation scheme \mathfrak{F}
E.g. blocks of letters, so abbbaabaaa $\rightarrow a b b b$ aa b aaa
(2) Assume L is expressed by X in E. Pick a word $w \in L$ such that w has more than $C_{E, \mathfrak{F}}$ distinct factors w.r.t. \mathfrak{F} E.g. $\quad a b a^{2} b^{2} a^{3} b^{3} \ldots a^{n} b^{n} c$ for $n>C_{E, \tilde{F}}$
(3) Take any solution h such that $h(X)=w$. At least one of the factors in w will be "unanchored" and we can freely replace it with any word $u \in \Sigma^{*}$
E.g. swapping a^{i} for c
4. If we chose w, \mathfrak{F} and u well, we get a new solution g such that $g(X)=w^{\prime}$ for some $w^{\prime} \notin L$ (a contradiction)

Showing Inexpressibility: WE (Karhumäki et al. 2000)

All occurrences of a^{i} line up exactly

Showing Inexpressibility: WE (Karhumäki et al. 2000)

So we can swap a^{i} for c without affecting the equality of both sides

Showing Inexpressibility: WE + LEN

Adapting this approach to work for WE + LEN is straightforward, we just need to preserve the lengths when swapping factors
E.g. swapping a^{i} for c^{i}

Adapting the same approach to work for WE + REG requires a bit more care, but can be done by an involved pumping argument.

Showing Inexpressibility: WE + LEN

Adapting this approach to work for WE + LEN is straightforward, we just need to preserve the lengths when swapping factors
E.g. swapping a^{i} for c^{i}

Adapting the same approach to work for WE + REG requires a bit more care, but can be done by an involved pumping argument.

Separating the Theories

$\left\{u c v\left|u, v \in\{a, b\}^{*} \wedge\right| u|=|v|\}\right.$

Showing Inexpressibility: WE + LEN + REG

Unfortunately, preserving lengths and pumping are incompatible when swapping out factors in a solution

Showing Inexpressibility: WE + LEN + REG

Unfortunately, preserving lengths and pumping are incompatible when swapping out factors in a solution

Theorem (Day, Ganesh, Grewal and Manea 2022)

There exist recursively enumerable languages which are not expressible in $W E+R E G+L E N$.

Showing Inexpressibility: WE + LEN + REG

Unfortunately, preserving lengths and pumping are incompatible when swapping out factors in a solution

Theorem (Day, Ganesh, Grewal and Manea 2022)

There exist recursively enumerable languages which are not expressible in $W E+R E G+L E N$.

Idea: Pump the "width" of the language (\# of words of length n)

A Convenient Normal Form

We can rewrite any WE + REG + LEN formula expressing a given language into the form:

$$
\bigvee_{1 \leq i \leq N}\left(E_{i} \wedge \psi_{i}^{l e n} \wedge \psi_{i}^{r e g}\right)
$$

where each E_{i} is a single word equation, $\psi_{l e n_{i}}$ is a Boolean combination of length constraints and $\psi_{i}^{\text {reg }}$ is a conjunction of regular constraints

Inexpressibility for WE + REG + LEN

Suppose h is a solution to an equation E which satisfies some length constraints $\psi^{l e n}$ and regular constraints given by A_{X}, A_{Y}.

Inexpressibility for WE + REG + LEN

Suppose $u=a b a$ is our unanchored factor. We can swap u for $v=$ aaa while still satisfying all constraints.

Inexpressibility for WE + REG + LEN

Suppose $u=a b a$ is our unanchored factor. We can swap u for $v=$ aaa while still satisfying all constraints.

Inexpressibility for WE + REG + LEN

- Let Q be the set of pairs of states for which an occurrence of u starts/ends $(Q=\{(q, p),(p, q),(r, s)\}$ in the previous example)
- The set of words v which start/end in the same combinations of states as u is a regular language R_{Q} which can be computed from the original automata using the product construction.
- Swapping u for some $v \in R_{Q}$ means the equation and regular constraints remain satisfied.

A P(I)umping Argument

- We construct a R.E. language L so that each word $\in L$ contains k near-copies of some word $w \in\{a, b\}^{k}$, subject to different encodings over the same alphabet $a, b, c, d, @, \$$. We "pad" each copy so it has length $k^{2}+2^{2^{k}}$.
- The words in L have lengths $k^{3}+k 2^{2^{k}}$ for each $k \in \mathbb{N}$.
- Since there are 2^{k} choices of w for each k, there are $\Theta(\log (n))$ words of length n in L.

A P(I)umping Argument

- Suppose (for contradiction) that L is expressible by some formula φ from WE + LEN + REG.
- The encoding means we can design a synchronising factorisation scheme which divides a word into its "copies" w_{i}.
- For all k large enough, at least one copy w_{i} of w is "unanchored". We associate each unanchored copy with the set Q of pairs of states it's occurrences start/end in w.r.t. to the regular constraints.
- The number of different sets Q is bound by aconstant $C_{\text {reg }}$ depending only on $\varphi^{\text {reg }}$
- For sufficiently large k, there are at least $\frac{2^{k}}{C_{r e g}}=\Omega\left(2^{k}\right)$ words of length $k^{2}+2^{2^{k}}$ whose occurrences start/end in pairs from Q.
- In other words, R_{Q} has at least $\Omega\left(2^{k}\right)$ words of length $\Theta\left(2^{2^{k}}\right)$.
- Properties of regular languages dictate that the width of R_{Q} cannot be logarithmic, so R_{Q} must have $\Omega\left(2^{2^{k}}\right)$ words of length $\Theta\left(2^{2^{k}}\right)$.
- Since this means that for long-enough words in L, there is an unanchored factor which may be swapped for a near-linear number of alternatives while still satisfying the formula φ. This means that L contains a near-linear number of words of a given length.
- A contradiction, so L is not expressible.

Undecidability From Above

Generalising WE + REG + LEN

- It is a long-standing open problem if satisfiability is decidable for $W E+L E N$ or $W E+$ REG + LEN .
- Let WE + CF denote the set of formulas whose atoms are word equations or $X \in L$ where L is a context free language (CFL)
- Then WE + CF is powerful enough to model length constraints and regular constraints, but unfortunately satisfiability is undecidable

Theorem

Every R.E. language is expressible in WE + CF.

Generalising WE + REG + LEN

- What about languages between CFL and REG?
- We want a decidable intersection problem
- And to have enough "memory" to compare lengths
- Visibly Pushdown Languages (VPLs)
 fit the bill...

Visibly Pushdown Languages

- Partition Σ into $\Sigma_{\text {call }}, \Sigma_{\text {return }}$ and $\Sigma_{\text {internal }}$.
- A language $L \subseteq \Sigma^{*}$ is a VPL if it is accepted by a pushdown automaton which
- pushes when reading a letter from $\Sigma_{\text {call }}$,
- pops when reading a letter from $\sum_{\text {return }}$,
- leaves the stack unchanged when reading a letter from $\sum_{\text {internal }}$,
- VPLs are closed under intersection, union, complement, ... and have decidable emptiness, equivalence, inclusion problems

Generalising WE + LEN + REG

Let WE + VPL denote the set of formulas whose atoms are word equations or $X \in L$ where L is a visibly pushdown language

Theorem (Day, Ganesh, Grewal and Manea 2022)

All R.E. languages are expressible in WE + VPL.

Corollary (Day, Ganesh, Grewal and Manea 2022)

Satisfiability for WE + VPL is undecidable.

Decision Problems

Rewriting Problems: WE + REG + LEN \rightarrow WE + REG

Theorem (Day, Ganesh, Grewal, Manea 2022)

The following problem is undecidable:
Given a WE + REG + LEN-formula φ and a non-empty subset S of the variables of φ, does there exist a WE + REG-formula ψ such that the relations expressed by S in φ and ψ are the same?

Rewriting Problems: WE + REG + LEN \rightarrow WE + LEN

Open Problem

Is the following problem is decidable?
Given a WE + REG + LEN-formula φ and a non-empty subset S of the variables of φ, does there exist a WE +LEN -formula ψ such that the relations expressed by S in φ and ψ are the same?

Rewriting Problems: WE \rightarrow REG

Theorem (Day, Ganesh, Grewal, Manea 2022)

The following problem is undecidable:
Given a WE-formula φ and a variable X occurring in φ is the language expressed by X in φ regular?

Rewriting Problems: REG \rightarrow WE

Open Problem

Is the following problem decidable?
Given a regular language L, is L expressible in WE?

Rewriting Problems: REG \rightarrow WE

A language L is thin if there is some word u which does not occur as a factor of any word in L.

Theorem (Day et al 2023)

Let e be a regular expression which does not contain \emptyset and such that $L(e)$ is thin. Then $L(e)$ is expressible in WE if and only if, for every subexpression of the form f^{*} of e, there exists w such that $L(f) \subseteq\{w\}^{*}$.

Corollary (Day et al 2023)

It is decidable whether a thin regular language is expressible in WE.

Open Problem

Open Problem

Are languages expressible in WE + REG + LEN decidable? Are they Context Sensitive?

Thank You!

