
Constraint programming and (dashed) string solving

Roberto Amadini

Department of Computer Science and Engineering, University of Bologna, Italy

Meeting On String Constraints and Applications
July 17th, 2023. Paris, France.

String analysis

Interest in string analysis active and growing over last decade

Test-Case Generation
Program Analysis
Model Checking
Web Security

Static string analysis: over-approximation of string computations

E.g., Abstract Interpretation with string abstract domains

Dynamic string analysis: under-approximation of string computations
E.g., (Dynamic) Symbolic Execution (DSE) of programs with strings

We need (string) constraint solving to solve path condition constraints

String constraint solving

String constraint solving (SCS) = solving combinatorial problems
with string variables and constraints on given alphabet Σ

Foundations lay in theory of automata and combinatorics on words
Word equations L = R with L,R ∈ (Σ ∪ Vars)∗ are central in SCS
General FOL theory undecidable, quantifier-free theory decidable
(Makanin, 1977)

We can classify string variables into:

fixed-length: given λ ∈ N, only take values in {w ∈ Σ∗ | |w | = λ}
bounded-length: given λ ∈ N, only take values in {w ∈ Σ∗ | |w | ≤ λ}
unbounded-length: they can take any value in Σ∗

String constraints: length, concatenation, regular, find/replace(-all),
lexicographic ordering, conversion string ↔ numbers

String constraint solvers

We can classify string solvers into:
automata-based: string variables represented by automata, string
constraints mapped to automata operations
word-based: natively handle theory of word-equations + extensions
unfolding-based: reduce to sequences of k ≥ 0 variables of type T
No sharp distinction, efficient SOTA solvers are hybrid

Figure from [Amadini, 2021]

String constraint solvers

Most SOTA “general-purpose” string solvers are SMT-based

SMT-LIB developed a theory of unicode strings

Some Constraint Programming (CP) proposals too

From CP perspective, SCS = solving CSP/COP with bounded-length
string variables: a maximum string length λ is fixed

Goal: assigning a consistent string literal to each string variable

CP proposals are mainly unfolding-based:
Bounded-length sequence (B.L.S.) variables [Scott et al., 2017]

String variable x unfolded into max |x | integer variables cxi = i-th char
of x (possibly empty), plus 1 integer variable nx for |x |

Dashed string (D.S.) variables [Amadini et al., 2020]

Dashed strings

Dashed strings: simplified regular expressions representing set of
strings in a more compact way w.r.t. B.L.S.

Inspired by Bricks abstract domain by [Costantini et al., 2015]

D.S. enable a more “lazy” unfolding w.r.t. B.L.S.: blocks group
together “similar regions” of the target string

If no clue on length upper bound, B.L.S. needs λ+ 1 integer variables

E.g., D.S. {b, c}1,1{a}0,1{d}1,2 denotes all the strings:

Starting with 1 b’s or c’s, followed by 0 or 1 a’s, followed by 1 or 2 d’s
. . . i.e., the set of strings {bd , bdd , bad , badd , cd , cdd , cad , cadd}

With B.L.S. representation it would be {b, c}{a, d}{ϵ, d}{ϵ, d},
denoting {ba, bd , ca, cd , bad , bdd , cad , cdd , badd , bddd , cadd , cddd}

More blocks, less precise abstraction

Dashed strings

Formally, a D.S. is a concatenation of blocks S l1,u1
1 S l2,u2

2 · · · S lk ,uk
k with

Si ⊆ Σ and 0 ≤ li ≤ ui ≤ λ

Each block S li ,ui
i denotes γ(S li ,ui

i) = {w ∈ S∗
i | li ≤ |w | ≤ ui}

If S = {w ∈ Σ∗ | |w | ≤ λ}, each D.S. X = S l1,u1
1 S l2,u2

2 · · · S lk ,uk
k

denotes: γ(X) =
(
γ(S l1,u1

1) · γ(S l2,u2
2) · · · · · γ(S lk ,uk

k)
)
∩ S

E.g, if Σ = {a, b, c} and λ = 3, X = {a}1,2{b, c}0,2 denotes
γ(X) = {a, ab, ac, abb, abc, acb, acc, aa, aab, aac}

aabb, aabc , aacb, aacc ̸∈ γ(X) because they have length > λ

Graphical interpretation

Each block S li ,ui
i can be seen as:

a continuous segment of length li (the mandatory part of the block),
followed by
a dashed segment of length ui − li (the optional part of the block)

E.g., graphical representation of X = {B,b}1,1{o}2,4{m}1,1{!}0,3

B, b o o o o m ! ! !

γ(X) = {Bom, bom, Boom, boom, . . . , Boooom!!!, boooom!!!}

Dashed string equation

Unfortunately, D.S. cannot precisely represent all the W ⊆ Σ∗

E.g., if W = {ab, ba} there is no a “best representation” X for W
s.t. γ(X) = W

We may take {a}0,1{b}1,1{a}0,1, {b}0,1{a}1,1{b}0,1 or {a, b}2,2 as
over-approximations: γ(X) ⊃ W

We need workarounds to find “good enough” approximations and
domains’ refinement

Given D.S. X ,Y we define the D.S. equation between X and Y as a
refinement operation Equate(X ,Y) s.t.

if Equate(X ,Y) = ⊥, then γ(X) ∩ γ(Y) = ∅
if Equate(X ,Y) = (X ′,Y ′), then γ(X ′) ⊆ γ(X), γ(Y ′) ⊆ γ(Y), and
γ(X) ∩ γ(Y) = γ(X ′) ∩ γ(Y ′)

Dashed string equation

Most of D.S. propagators we propose are based on sweep-based
equation algorithms matching blocks against portions of D.S.

Suitable push and stretch operations are used to find the
earliest/latest start/end positions where a block can match a D.S.

push: consumes the least characters of a block, can “jump”
stretch: consumes the most characters of a block
ESP...LEP = feasible region ⊇ mandatory region = LSP...EEP
If there is no feasible match, ⊥ is returned

Matching regions are then used to possibly refine the blocks

A normalization is used to remove spurious configurations
E.g., Norm({a}0,2 ∅1,5 {a}1,1) = {a}1,3

Dashed string equation

E.g., matching B = {o, m, g}2,6 vs. X = {B,b}1,1{o}2,4{m}1,1{!}0,3

(1,0) (2,0) (2,1) (2,2) (2,3) (3,0) (4,0) (4,1) (4,2) (4,3)

B, b o o o o m ! ! !

The earliest start position of B is (2, 0)

The latest start position of B is (2, 3)

The earliest end position of B is (2, 2)

The latest end position of B is (4, 0)

Feasible region = ESP...LEP = X [(2, 0), (4, 0)] = {o}2,4{m}1,1

Mandatory region = LSP...EEP = X [(2, 3), (2, 2)] = ∅0,0

Dashed string equation

E.g., matching B = {o, m, g}2,6 vs. X = {B,b}1,1{o}2,4{m}1,1{!}0,3

(1,0) (2,0) (2,1) (2,2) (2,3) (3,0) (4,0) (4,1) (4,2) (4,3)

B, b o o o o m ! ! !

Feasible region = ESP...LEP = X [(2, 0), (4, 0)] = {o}2,4{m}1,1: B
must match X within this region

Mandatory region = LSP...EEP = X [(2, 3), (2, 2)] = ∅0,0: no precise
information about which blocks are surely matched by B

What we know is that ≥ 2 blocks and ≤ 6 blocks of the feasible
region must be matched by B

Dashed string equation

E.g., matching B = {o, m, g}2,6 vs. X = {B,b}1,1{o}2,4{m}1,1{!}0,3

(1,0) (2,0) (2,1) (2,2) (2,3) (3,0) (4,0) (4,1) (4,2) (4,3)

B, b o o o o m ! ! !

Feasible region = ESP...LEP = X [(2, 0), (4, 0)] = {o}2,4{m}1,1

Mandatory region = LSP...EEP = X [(2, 3), (2, 2)] = ∅0,0

We cannot in general refine B into {o}2,4{m}1,1: there might be
blocks before/after B matching X [(2, 0), (4, 0)]

Surely we can crush the feasible region {o}2,4{m}1,1 into {o, m}3,5

and refine B into ({o, m, g} ∩ {o, m})2,min(6,5) = {o, m}2,5

Dashed string equation

The worst-case complexity of finding matching positions is linear in
the number of blocks of X and Y

ESPk+1 ≡ EEPk , LSPk+1 ≡ LEPk

The refinement might be quadratic, but it’s a very rare case

We proved that our approach is sound

Its completeness is still an open issue: if γ(X) ∩ γ(Y) = ∅, we have no
proof that Equate(X ,Y) = ⊥

We built several propagators for string constraints on top of Equate

(Dis-)equality, reified equality, concatenation, . . .

Propagators Equate-based

x = y

x ̸= y

b ⇐⇒ x = y

z = x · y
y = xn

y = x−1

y = x [i ..j]

find

Replace

Replace-All

. . .

Propagators not Equate-based

n = |x |

x ≺ y , x ⪯ y , x ⪰ y , x ≻ y

x ∈ L(R)

i = match(x , ρ)

Branching

Often we need to branch on string variables to get a feasible solution

We first fix the length of a string variable, then the cardinality of one
of its blocks, and finally the base of that block

{a, b}1,2

{a, b}1,1

a b

{a, b}2,2

{a}1,1{a, b}1,1

aa ab

{b}1,1{a, b}1,1

ba bb

Implementation

We implemented string variables, propagators and branchers into
G-Strings

Experimental extension of Gecode solver, written in C++

We developed a MiniZinc interface to ease the modeling of SCS
problems, and a compiler MiniZinc→SMT-LIB

Most state-of-the-art string solvers are SMT-based

We performed several evaluations over different benchmarks with
good results, especially with long strings and big regex

E.g., StringFuzz benchmarks

G-Strings development a bit quiet now :-(

Conclusions

We presented a CP approach for SCS based on dashed strings

Possible extensions

New string constraints
New branching heuristics
Clause learning
Portfolios of string solvers
. . .

How to involve students / companies? :)

Thanks for your attention!

References

[Amadini et al., 2020] Roberto Amadini, Graeme Gange, and Peter J.
Stuckey.
Dashed strings for string constraint solving.
Artif. Intell., 289:103368, 2020.

[Amadini, 2021] Roberto Amadini.
A survey on string constraint solving.
ACM Comput. Surv., 55(1), nov 2021.

[Costantini et al., 2015] Giulia Costantini, Pietro Ferrara, and Agostino
Cortesi.
A suite of abstract domains for static analysis of string values.
Software: Practice and Experience, 45(2):245–287, 2015.

[Scott et al., 2017] Joseph D. Scott, Pierre Flener, Justin Pearson, and
Christian Schulte.
Design and implementation of bounded-length sequence variables.
In CPAIOR, volume 10335 of LNCS, pages 51–67. Springer, 2017.

