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String analysis

Interest in string analysis active and growing over last decade

Test-Case Generation
Program Analysis
Model Checking
Web Security

Static string analysis: over-approximation of string computations

E.g., Abstract Interpretation with string abstract domains

Dynamic string analysis: under-approximation of string computations
E.g., (Dynamic) Symbolic Execution (DSE) of programs with strings

We need (string) constraint solving to solve path condition constraints



String constraint solving

String constraint solving (SCS) = solving combinatorial problems
with string variables and constraints on given alphabet Σ

Foundations lay in theory of automata and combinatorics on words
Word equations L = R with L,R ∈ (Σ ∪ Vars)∗ are central in SCS
General FOL theory undecidable, quantifier-free theory decidable
(Makanin, 1977)

We can classify string variables into:

fixed-length: given λ ∈ N, only take values in {w ∈ Σ∗ | |w | = λ}
bounded-length: given λ ∈ N, only take values in {w ∈ Σ∗ | |w | ≤ λ}
unbounded-length: they can take any value in Σ∗

String constraints: length, concatenation, regular, find/replace(-all),
lexicographic ordering, conversion string ↔ numbers



String constraint solvers

We can classify string solvers into:
automata-based: string variables represented by automata, string
constraints mapped to automata operations
word-based: natively handle theory of word-equations + extensions
unfolding-based: reduce to sequences of k ≥ 0 variables of type T
No sharp distinction, efficient SOTA solvers are hybrid

Figure from [Amadini, 2021]



String constraint solvers

Most SOTA “general-purpose” string solvers are SMT-based

SMT-LIB developed a theory of unicode strings

Some Constraint Programming (CP) proposals too

From CP perspective, SCS = solving CSP/COP with bounded-length
string variables: a maximum string length λ is fixed

Goal: assigning a consistent string literal to each string variable

CP proposals are mainly unfolding-based:
Bounded-length sequence (B.L.S.) variables [Scott et al., 2017]

String variable x unfolded into max |x | integer variables cxi = i-th char
of x (possibly empty), plus 1 integer variable nx for |x |

Dashed string (D.S.) variables [Amadini et al., 2020]



Dashed strings

Dashed strings: simplified regular expressions representing set of
strings in a more compact way w.r.t. B.L.S.

Inspired by Bricks abstract domain by [Costantini et al., 2015]

D.S. enable a more “lazy” unfolding w.r.t. B.L.S.: blocks group
together “similar regions” of the target string

If no clue on length upper bound, B.L.S. needs λ+ 1 integer variables

E.g., D.S. {b, c}1,1{a}0,1{d}1,2 denotes all the strings:

Starting with 1 b’s or c’s, followed by 0 or 1 a’s, followed by 1 or 2 d’s
. . . i.e., the set of strings {bd , bdd , bad , badd , cd , cdd , cad , cadd}

With B.L.S. representation it would be {b, c}{a, d}{ϵ, d}{ϵ, d},
denoting {ba, bd , ca, cd , bad , bdd , cad , cdd , badd , bddd , cadd , cddd}

More blocks, less precise abstraction



Dashed strings

Formally, a D.S. is a concatenation of blocks S l1,u1
1 S l2,u2

2 · · · S lk ,uk
k with

Si ⊆ Σ and 0 ≤ li ≤ ui ≤ λ

Each block S li ,ui
i denotes γ(S li ,ui

i ) = {w ∈ S∗
i | li ≤ |w | ≤ ui}

If S = {w ∈ Σ∗ | |w | ≤ λ}, each D.S. X = S l1,u1
1 S l2,u2

2 · · · S lk ,uk
k

denotes: γ(X ) =
(
γ(S l1,u1

1 ) · γ(S l2,u2
2 ) · · · · · γ(S lk ,uk

k )
)
∩ S

E.g, if Σ = {a, b, c} and λ = 3, X = {a}1,2{b, c}0,2 denotes
γ(X ) = {a, ab, ac, abb, abc, acb, acc, aa, aab, aac}

aabb, aabc , aacb, aacc ̸∈ γ(X ) because they have length > λ



Graphical interpretation

Each block S li ,ui
i can be seen as:

a continuous segment of length li (the mandatory part of the block),
followed by
a dashed segment of length ui − li (the optional part of the block)

E.g., graphical representation of X = {B,b}1,1{o}2,4{m}1,1{!}0,3

B, b o o o o m ! ! !

γ(X ) = {Bom, bom, Boom, boom, . . . , Boooom!!!, boooom!!!}



Dashed string equation

Unfortunately, D.S. cannot precisely represent all the W ⊆ Σ∗

E.g., if W = {ab, ba} there is no a “best representation” X for W
s.t. γ(X ) = W

We may take {a}0,1{b}1,1{a}0,1, {b}0,1{a}1,1{b}0,1 or {a, b}2,2 as
over-approximations: γ(X ) ⊃ W

We need workarounds to find “good enough” approximations and
domains’ refinement

Given D.S. X ,Y we define the D.S. equation between X and Y as a
refinement operation Equate(X ,Y ) s.t.

if Equate(X ,Y ) = ⊥, then γ(X ) ∩ γ(Y ) = ∅
if Equate(X ,Y ) = (X ′,Y ′), then γ(X ′) ⊆ γ(X ), γ(Y ′) ⊆ γ(Y ), and
γ(X ) ∩ γ(Y ) = γ(X ′) ∩ γ(Y ′)



Dashed string equation

Most of D.S. propagators we propose are based on sweep-based
equation algorithms matching blocks against portions of D.S.

Suitable push and stretch operations are used to find the
earliest/latest start/end positions where a block can match a D.S.

push: consumes the least characters of a block, can “jump”
stretch: consumes the most characters of a block
ESP...LEP = feasible region ⊇ mandatory region = LSP...EEP
If there is no feasible match, ⊥ is returned

Matching regions are then used to possibly refine the blocks

A normalization is used to remove spurious configurations
E.g., Norm({a}0,2 ∅1,5 {a}1,1) = {a}1,3



Dashed string equation

E.g., matching B = {o, m, g}2,6 vs. X = {B,b}1,1{o}2,4{m}1,1{!}0,3

(1,0) (2,0) (2,1) (2,2) (2,3) (3,0) (4,0) (4,1) (4,2) (4,3)

B, b o o o o m ! ! !

The earliest start position of B is (2, 0)

The latest start position of B is (2, 3)

The earliest end position of B is (2, 2)

The latest end position of B is (4, 0)

Feasible region = ESP...LEP = X [(2, 0), (4, 0)] = {o}2,4{m}1,1

Mandatory region = LSP...EEP = X [(2, 3), (2, 2)] = ∅0,0



Dashed string equation

E.g., matching B = {o, m, g}2,6 vs. X = {B,b}1,1{o}2,4{m}1,1{!}0,3

(1,0) (2,0) (2,1) (2,2) (2,3) (3,0) (4,0) (4,1) (4,2) (4,3)

B, b o o o o m ! ! !

Feasible region = ESP...LEP = X [(2, 0), (4, 0)] = {o}2,4{m}1,1: B
must match X within this region

Mandatory region = LSP...EEP = X [(2, 3), (2, 2)] = ∅0,0: no precise
information about which blocks are surely matched by B

What we know is that ≥ 2 blocks and ≤ 6 blocks of the feasible
region must be matched by B



Dashed string equation

E.g., matching B = {o, m, g}2,6 vs. X = {B,b}1,1{o}2,4{m}1,1{!}0,3

(1,0) (2,0) (2,1) (2,2) (2,3) (3,0) (4,0) (4,1) (4,2) (4,3)

B, b o o o o m ! ! !

Feasible region = ESP...LEP = X [(2, 0), (4, 0)] = {o}2,4{m}1,1

Mandatory region = LSP...EEP = X [(2, 3), (2, 2)] = ∅0,0

We cannot in general refine B into {o}2,4{m}1,1: there might be
blocks before/after B matching X [(2, 0), (4, 0)]

Surely we can crush the feasible region {o}2,4{m}1,1 into {o, m}3,5

and refine B into ({o, m, g} ∩ {o, m})2,min(6,5) = {o, m}2,5



Dashed string equation

The worst-case complexity of finding matching positions is linear in
the number of blocks of X and Y

ESPk+1 ≡ EEPk , LSPk+1 ≡ LEPk

The refinement might be quadratic, but it’s a very rare case

We proved that our approach is sound

Its completeness is still an open issue: if γ(X ) ∩ γ(Y ) = ∅, we have no
proof that Equate(X ,Y ) = ⊥

We built several propagators for string constraints on top of Equate

(Dis-)equality, reified equality, concatenation, . . .



Propagators Equate-based

x = y

x ̸= y

b ⇐⇒ x = y

z = x · y
y = xn

y = x−1

y = x [i ..j ]

find

Replace

Replace-All

. . .



Propagators not Equate-based

n = |x |

x ≺ y , x ⪯ y , x ⪰ y , x ≻ y

x ∈ L(R)

i = match(x , ρ)



Branching

Often we need to branch on string variables to get a feasible solution

We first fix the length of a string variable, then the cardinality of one
of its blocks, and finally the base of that block

{a, b}1,2

{a, b}1,1

a b

{a, b}2,2

{a}1,1{a, b}1,1

aa ab

{b}1,1{a, b}1,1

ba bb



Implementation

We implemented string variables, propagators and branchers into
G-Strings

Experimental extension of Gecode solver, written in C++

We developed a MiniZinc interface to ease the modeling of SCS
problems, and a compiler MiniZinc→SMT-LIB

Most state-of-the-art string solvers are SMT-based

We performed several evaluations over different benchmarks with
good results, especially with long strings and big regex

E.g., StringFuzz benchmarks

G-Strings development a bit quiet now :-(



Conclusions

We presented a CP approach for SCS based on dashed strings

Possible extensions

New string constraints
New branching heuristics
Clause learning
Portfolios of string solvers
. . .

How to involve students / companies? :)



Thanks for your attention!
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