Word Equations in Synergy with Regular Constraints (based on FM'23 and OOPSLA'23 papers)

František Blahoudek ${ }^{1}$, Yu-Fang Chen ${ }^{2}$, David Chocholatý ${ }^{1}$, Vojtěch Havlena ${ }^{1}$, Lukáš Holík ${ }^{1}$, Ondřej Lengál ${ }^{1}$, and Juraj Síč ${ }^{1}$
${ }^{1}$ Faculty of Information Technology, Brno University of Technology, Czech Republic ${ }^{2}$ Institute of Information Science, Academia Sinica, Taiwan

String solving

- Satisfiability of formulas over string constraints such as:

$$
\underbrace{x=y z \wedge y \neq u}_{\text {(in)equations }} \wedge \overbrace{x \in(a b)^{*} a^{+}(b \mid c)}^{\text {regular constraints }} \wedge \overbrace{|x|=2|u|+1}^{\text {length constraints }} \wedge \underbrace{\text { contains }(u, \text { replaceAll }(z, b, c))}_{\text {more complex operations }}
$$

- String manipulation in programs
- source of security vulnerabilities
- scripting languages rely heavily on strings
- Analysis of AWS access policies
- ...

String solving

- Satisfiability of formulas over string constraints such as:
$\underbrace{x=y z \wedge y \neq u}_{\text {(in) equations }} \wedge \overbrace{x \in(a b)^{*} a^{+}(b \mid c)}^{\text {regular constraints }} \wedge \overbrace{|x|=2|u|+1}^{\text {length constraints }} \wedge \underbrace{\text { contains }(u, \text { replaceAll }(z, b, c))}_{\text {more complex operations }}$
- A source of difficulty: equations with regular constraints
- Example: zyx $=x x z \wedge y \in a^{+} b^{+} \wedge z \in b^{*} \wedge x \in a^{*}$
- results in an infinite case split
- leads to failure for all current solvers (except ours!)

String solving

- Satisfiability of formulas over string constraints such as:
$\underbrace{x=y z \wedge y \neq u}_{\text {(in) equations }} \wedge \overbrace{x \in(a b)^{*} a^{+}(b \mid c)}^{\text {regular constraints }} \wedge \overbrace{|x|=2|u|+1}^{\text {length constraints }} \wedge \underbrace{\text { contains }(u, \text { replaceAll }(z, b, c))}_{\text {more complex operations }}$
- A source of difficulty: equations with regular constraints
- Example: $z y x=x x z \wedge y \in a^{+} b^{+} \wedge z \in b^{*} \wedge x \in a^{*}$
- results in an infinite case split
- leads to failure for all current solvers (except ours!)

String solving

- Satisfiability of formulas over string constraints such as:
$\underbrace{x=y z \wedge y \neq u}_{\text {(in) } \text { equations }} \wedge \overbrace{x \in(a b)^{*} a^{+}(b \mid c)}^{\text {regular constraints }} \wedge \overbrace{|x|=2|u|+1}^{\text {length constraints }} \wedge \underbrace{\text { contains }(u, \text { replaceAll }(z, b, c))}_{\text {more complex operations }}$
- A source of difficulty: equations with regular constraints
- Example: zyx $=x x z \wedge y \in a^{+} b^{+} \wedge z \in b^{+} \wedge x \in a^{*}$
- results in an infinite case split
- leads to failure for all current solvers (except ours!)

String solving

- Satisfiability of formulas over string constraints such as:
$\underbrace{x=y z \wedge y \neq u}_{\text {(in) equations }} \wedge \overbrace{x \in(a b)^{*} a^{+}(b \mid c)}^{\text {regular constraints }} \wedge \overbrace{|x|=2|u|+1}^{\text {length constraints }} \wedge \underbrace{\text { contains }(u, \text { replaceAll }(z, b, c))}_{\text {more complex operations }}$
- A source of difficulty: equations with regular constraints
- Example: zyx $=x x z \wedge y \in a^{+} b^{+} \wedge z \in b^{+} \wedge x \in a^{*}$
- results in an infinite case split
- leads to failure for all current solvers (except ours!)

String solving

- Satisfiability of formulas over string constraints such as:
$\underbrace{x=y z \wedge y \neq u}_{\text {(in) equations }} \wedge \overbrace{x \in(a b)^{*} a^{+}(b \mid c)}^{\text {regular constraints }} \wedge \overbrace{|x|=2|u|+1}^{\text {length constraints }} \wedge \underbrace{\text { contains }(u, \text { replaceAll }(z, b, c))}_{\text {more complex operations }}$
- A source of difficulty: equations with regular constraints
- Example: $z y x=x x z \wedge y \in a^{+} b^{+} \wedge z \in b^{+} \wedge x \in a^{*}$
- results in an infinite case split
- leads to failure for all current solvers (except ours!)

String solving

- Satisfiability of formulas over string constraints such as:
$\underbrace{x=y z \wedge y \neq u}_{\text {(in) equations }} \wedge \overbrace{x \in(a b)^{*} a^{+}(b \mid c)}^{\text {regular constraints }} \wedge \overbrace{|x|=2|u|+1}^{\text {length constraints }} \wedge \underbrace{\text { contains }(u, \text { replaceAll }(z, b, c))}_{\text {more complex operations }}$
- A source of difficulty: equations with regular constraints
- Example: $z y x=x x z \wedge y \in a^{+} b^{+} \wedge z \in b^{+} \wedge x=\epsilon$
- results in an infinite case split
- leads to failure for all current solvers (except ours!)

String solving

- Satisfiability of formulas over string constraints such as:
$\underbrace{x=y z \wedge y \neq u}_{\text {(in) equations }} \wedge \overbrace{x \in(a b)^{*} a^{+}(b \mid c)}^{\text {regular constraints }} \wedge \overbrace{|x|=2|u|+1}^{\text {length constraints }} \wedge \underbrace{\text { contains }(u, \text { replaceAll }(z, b, c))}_{\text {more complex operations }}$
- A source of difficulty: equations with regular constraints
- Example: $z y=z \wedge y \in a^{+} b^{+} \wedge z \in b^{+}$
- results in an infinite case split
- leads to failure for all current solvers (except ours!)

String solving

- Satisfiability of formulas over string constraints such as:
$\underbrace{x=y z \wedge y \neq u}_{\text {(in) equations }} \wedge \overbrace{x \in(a b)^{*} a^{+}(b \mid c)}^{\text {regular constraints }} \wedge \overbrace{|x|=2|u|+1}^{\text {length constraints }} \wedge \underbrace{\text { contains }(u, \text { replaceAll }(z, b, c))}_{\text {more complex operations }}$
- A source of difficulty: equations with regular constraints
- Example: zy $=z \wedge y \in a^{+} b^{+} \wedge z \in b^{+}$
- results in an infinite case split
- leads to failure for all current solvers (except ours!)
- it is UNSAT

Our Approach

- Decision procedure tightly integrating regular constraints with equations
- Gradually refines regular constraints according to equations until:
- an infeasible constraint is generated or
- refinement becomes stable
- Complete on the chain-free fragment [AbdullaADHJ'19]
- largest known decidable fragment for equations, regular, transducer, and length constraints
- Prototype tool Z3-Noodler
- extension of Z3
- competitive to existing solvers

Example

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

- $\Sigma=\{a, b\}$

Example

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

- $\Sigma=\{a, b\}$
- Use equations to refine regular constraints

Example

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

- $\Sigma=\{a, b\}$
- Use equations to refine regular constraints
- Start with $x y x=z u$

Example

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

- $\Sigma=\{a, b\}$
- Use equations to refine regular constraints
- Start with $x y x=z u$
- For any solution ν, the string $s=\nu(x) \cdot \nu(y) \cdot \nu(x)=\nu(z) \cdot \nu(u)$ satisfies

$$
s \in \overbrace{\Sigma^{*}}^{x} \overbrace{\Sigma^{*}}^{y} \overbrace{\Sigma^{*}}^{x}==\overbrace{a(b a)^{*}}^{z} \overbrace{(b a b a)^{*} a}^{u}
$$

Example

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

- $\Sigma=\{a, b\}$
- Use equations to refine regular constraints
- Start with $x y x=z u$
- For any solution ν, the string $s=\nu(x) \cdot \nu(y) \cdot \nu(x)=\nu(z) \cdot \nu(u)$ satisfies

$$
s \in \overbrace{\Sigma^{*}}^{x} \overbrace{\Sigma^{*}}^{y} \overbrace{\Sigma^{*}}^{x}=\overbrace{a(b a)^{*}}^{z} \overbrace{(b a b a)^{*} a}^{u}
$$

- Refine x, y from the left-hand side $x y x$ using special intersection

Intersection with epsilon transitions [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

- Construct automata for both sides
- $\mathcal{A}_{z u}$ - concatenation of right side, $a(b a)^{*} a$, minimized
- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions

Intersection with epsilon transitions [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

- Construct automata for both sides
- $\mathcal{A}_{z u}$ - concatenation of right side, $a(b a)^{*} a$, minimized
- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions
- Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
- synchronous product construction

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

- Construct automata for both sides
- $\mathcal{A}_{z u}$ - concatenation of right side, $a(b a)^{*} a$, minimized
- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions
- Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
- synchronous product construction
-

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

- Construct automata for both sides
- $\mathcal{A}_{z u}$ - concatenation of right side, $a(b a)^{*} a$, minimized
- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions
- Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
- synchronous product construction
- keep ϵ transitions

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

- Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
- synchronous product construction
- keep ϵ transitions
- Construct automata for both sides
- $\mathcal{A}_{z u}$ - concatenation of right side, $a(b a)^{*} a$, minimized
- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions

Intersection with epsilon transitions [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

- Construct automata for both sides
- $\mathcal{A}_{z u}$ - concatenation of right side, $a(b a)^{*}$ a, minimized
- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions
- Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
- synchronous product construction
- keep ϵ transitions

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

(3) $\frac{(p, 3)}{a \uparrow}$
(2) ($(p, 2)-(q, 2)$

$$
\rightarrow(p, 1)-((q, 1)
$$

- Construct automata for both sides
- $\mathcal{A}_{z u}$ - concatenation of right side, $a(b a)^{*} a$, minimized
- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions
- Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
- synchronous product construction
- keep ϵ transitions

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$\mathcal{A}_{z u}$

- Construct automata for both sides
- $\mathcal{A}_{z u}$ - concatenation of right side, $a(b a)^{*} a$, minimized
- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions
- Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
- synchronous product construction
- keep ϵ transitions

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

- Construct automata for both sides
- $\mathcal{A}_{z u}$ - concatenation of right side, $a(b a)^{*} a$, minimized
- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions
- Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
- synchronous product construction
- keep ϵ transitions

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$$
\begin{aligned}
& \text { (3) } \frac{(p, 3)}{a^{\uparrow}}-((q, 3) \\
& ((p, 2)--(q, 2) \\
& a^{1}, b b \text { a } \\
& \rightarrow(p, 1)-((q, 1)-(r, 1)
\end{aligned}
$$

- Construct automata for both sides
- $\mathcal{A}_{z u}$ - concatenation of right side, $a(b a)^{*} a$, minimized
- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions
- Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
- synchronous product construction
- keep ϵ transitions

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$\mathcal{A}_{z u}$

$$
\frac{(p, 3)}{a^{\uparrow}}-(q, 3)
$$

$$
\text { (2) }(p, 2)-(q, 2)
$$

$$
-(1) \rightarrow(p, 1)-((q, 1)-(r, 1)
$$

- Construct automata for both sides
- $\mathcal{A}_{z u}$ - concatenation of right side, $a(b a)^{*} a$, minimized
- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions
- Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
- synchronous product construction
- keep ϵ transitions

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

- Construct automata for both sides
- $\mathcal{A}_{z u}$ - concatenation of right side, $a(b a)^{*} a$, minimized
- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions
- Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
- synchronous product construction
- keep ϵ transitions

Intersection with epsilon transitions [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$$
\frac{(p, 3)}{a^{\wedge}}-\frac{(q, 3)}{a^{\wedge}}
$$

(2) ($(p, 2)->(q, 2)-((r, 2)$

$$
\rightarrow((p, 1)->(q, 1)->(r, 1)
$$

- Construct automata for both sides
- $\mathcal{A}_{z u}$ - concatenation of right side, $a(b a)^{*} a$, minimized
- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions
- Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
- synchronous product construction
- keep ϵ transitions

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$$
\text { (a) }-\cdots \rightarrow \text { (C) } \mathcal{A}_{x y x}
$$

$\mathcal{A}_{z u}$

$$
\text { (3) } \frac{(p, 3)}{a^{\uparrow}} \div \frac{((q, 3)}{a^{\uparrow}}-((r, 3)
$$

- Construct automata for both sides
- $\mathcal{A}_{z u}$ - concatenation of right side, $a(b a)^{*} a$, minimized
- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions
- Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
- synchronous product construction
- keep ϵ transitions

Intersection with epsilon transitions [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

(3) $\frac{((p, 3)-}{a_{\uparrow}}-\frac{(q, 3)-}{a \uparrow}-((r, 3)$

- Construct automata for both sides
- $\mathcal{A}_{z u}$ - concatenation of right side, $a(b a)^{*} a$, minimized
- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions
- Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
- synchronous product construction
- keep ϵ transitions

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

- Construct automata for both sides
- $\mathcal{A}_{z u}$ - concatenation of right side, $a(b a)^{*} a$, minimized
- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions
- Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
- synchronous product construction
- keep ϵ transitions

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

(3) $\frac{(p, 3)-}{a \uparrow}-\frac{((q, 3)-}{a \uparrow}-\frac{((r, 3)}{a \uparrow}$
(2) $(p, 2)-((q, 2)-((r, 2)$

$$
\rightarrow((p, 1)-(q, 1)-((r, 1)
$$

- Construct automata for both sides
- $\mathcal{A}_{z u}$ - concatenation of right side, $a(b a)^{*} a$, minimized
- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions
- Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
- synchronous product construction
- keep ϵ transitions

Intersection with epsilon transitions [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$$
\begin{aligned}
& \mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
\end{aligned}
$$

- Construct automata for both sides
- $\mathcal{A}_{z u}$ - concatenation of right side, $a(b a)^{*} a$, minimized
- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions
- Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
- synchronous product construction
- keep ϵ transitions
- Variables x and y are nicely separated

Noodlification and unification [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$$
\begin{aligned}
& \mathcal{A}_{z u}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
\end{aligned}
$$

- Split product into noodles
- case split
- values of y depend on values of x

Noodlification and unification [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$$
\begin{aligned}
& \mathcal{A}_{z u}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
\end{aligned}
$$

- Split product into noodles
- case split
- values of y depend on values of x

Noodlification and unification [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$$
\begin{aligned}
& \mathcal{A}_{z u}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
\end{aligned}
$$

- Split product into noodles
- case split
- values of y depend on values of x
- Noodle languages:
- $L_{1}^{x}=a(b a)^{*} a$
- $L^{y}=\epsilon$
- $L_{2}^{x}=\epsilon$

Noodlification and unification [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

- Split product into noodles
- case split
- values of y depend on values of x
- Noodle languages:
- $L_{1}^{x}=a(b a)^{*} a$
- $L^{y}=\epsilon$
- $L_{2}^{x}=\epsilon$
- Unification:
- \cap of langs for the same variable
- Lang $(x)=L_{1}^{x} \cap L_{2}^{x}=$
- $\operatorname{Lang}(y)=L^{y}=$

Noodlification and unification [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

- Split product into noodles
- case split
- values of y depend on values of x
- Noodle languages:
- $L_{1}^{x}=a(b a)^{*} a$
- $L^{y}=\epsilon$
- $L_{2}^{x}=\epsilon$
- Unification:
- \cap of langs for the same variable
- Lang $(x)=L_{1}^{x} \cap L_{2}^{x}=a(b a)^{*} a \cap \epsilon=\emptyset$
- $\operatorname{Lang}(y)=L^{y}=\epsilon$

Noodlification and unification [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

- Split product into noodles
- case split
- values of y depend on values of x
- Noodle languages:
- $L_{1}^{x}=$
- $L^{y}=$
- $L_{2}^{x}=$
- Unification:
- \cap of langs for the same variable
- Lang $(x)=L_{1}^{x} \cap L_{2}^{x}=$
- $\operatorname{Lang}(y)=L^{y}=$

Noodlification and unification [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

- Split product into noodles
- case split
- values of y depend on values of x
- Noodle languages:
- $L_{1}^{x}=a(b a)^{*}$
- $L^{y}=(b a)^{*}$
- $L_{2}^{x}=(b a)^{*} a$
- Unification:
- \cap of langs for the same variable
- $\operatorname{Lang}(x)=L_{1}^{x} \cap L_{2}^{x}=a(b a)^{*} \cap(b a)^{*} a=a$
- $\operatorname{Lang}(y)=L^{y}=(b a)^{*}$

Noodlification and unification [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in a \wedge y \in(b a)^{*} \wedge w \in \Sigma^{*}
$$

- Split product into noodles
- case split
- values of y depend on values of x
- Noodle languages:
- $L_{1}^{x}=a(b a)^{*}$
- $L^{y}=(b a)^{*}$
- $L_{2}^{x}=(b a)^{*} a$
- Unification:
- \cap of langs for the same variable
- $\operatorname{Lang}(x)=L_{1}^{x} \cap L_{2}^{x}=a(b a)^{*} \cap(b a)^{*} a=a$
- $\operatorname{Lang}(y)=L^{y}=(b a)^{*}$

Continuing [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in a \wedge y \in(b a)^{*} \wedge w \in \Sigma^{*}
$$

- Refine further with ww = xa:

$$
\overbrace{\Sigma^{*}}^{w} \overbrace{\Sigma^{*}}^{w}=\overbrace{a}^{x} a
$$

Continuing [FM'23]

$x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in a \wedge y \in(b a)^{*} \wedge w \in a$

- Refine further with ww = xa:

Continuing [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in a \wedge y \in(b a)^{*} \wedge w \in a
$$

- Refine further with $w w=x a$:

- Languages in equations match:

Continuing [FM'23]

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in a \wedge y \in(b a)^{*} \wedge w \in a
$$

- Refine further with $w w=x a$:

- Languages in equations match:

- Because of stability (next slide), enough to decide SAT

Stability of equation system [FM'23]

- Single-equation system $\Phi: s=t \wedge \bigwedge_{x \in \mathbb{X}} x \in \operatorname{Lang}_{\Phi}(x) \quad$ where $\operatorname{Lang}_{\Phi}: \mathbb{X} \rightarrow \mathcal{P}\left(\Sigma^{*}\right)$ System Φ is SAT iff there is refinement Lang of $\operatorname{Lang}_{\Phi}$ where $\operatorname{Lang}(s)=\operatorname{Lang}(t)$.

Stability of equation system [FM'23]

- Single-equation system

$$
\Phi: s=t \wedge \bigwedge_{x \in \mathbb{X}} x \in \operatorname{Lang}_{\Phi}(x) \quad \text { where } \operatorname{Lang}_{\Phi}: \mathbb{X} \rightarrow \mathcal{P}\left(\Sigma^{*}\right)
$$

System Φ is SAT iff there is refinement Lang of $\operatorname{Lang}_{\phi}$ where $\operatorname{Lang}(s)=\operatorname{Lang}(t)$.

- If all variables in t occur in $s=t$ exactly once:

System Φ is SAT iff there is refinement Lang of $\operatorname{Lang}_{\Phi}$ where $\operatorname{Lang}(s) \subseteq \operatorname{Lang}(t)$.

Stability of equation system [FM'23]

- Single-equation system

$$
\Phi: s=t \wedge \bigwedge_{x \in \mathbb{X}} x \in \operatorname{Lang}_{\Phi}(x) \quad \text { where } \operatorname{Lang}_{\Phi}: \mathbb{X} \rightarrow \mathcal{P}\left(\Sigma^{*}\right)
$$

System Φ is SAT iff there is refinement Lang of $\operatorname{Lang}_{\phi}$ where $\operatorname{Lang}(s)=\operatorname{Lang}(t)$.

- If all variables in t occur in $s=t$ exactly once:

System Φ is SAT iff there is refinement Lang of $\operatorname{Lang}_{\phi}$ where $\operatorname{Lang}(s) \subseteq \operatorname{Lang}(t)$.

- Can be extended to multi-equation system

Inclusion Graph [FM'23]

Inclusion Graph:

- denotes how information should be propagated
- for each equation $s=t$, make two nodes: $s \subseteq t$ and $t \subseteq s$
- Example:

$$
u=z \quad \wedge \quad v=u \quad \wedge \quad x=u v x
$$

- We explore paths in the inclusion graph until all inclusions are satisfied, UNSAT, or T/O.

Inclusion Graph [FM'23]

Inclusion Graph:

- denotes how information should be propagated
- for each equation $s=t$, make two nodes: $s \subseteq t$ and $t \subseteq s$
- Example:

- We explore paths in the inclusion graph until all inclusions are satisfied, UNSAT, or T/O. Chain-free equations \& reg. constraints [AbdullaADHJ'19] (cf. their splitting graph):

Theorem

For chain-free constraint there exists an acyclic inclusion graph.

- \rightsquigarrow completeness

Adding Length Constraints [OOPSLA'23]

$$
\underbrace{x=y z}_{\text {equations }} \wedge \overbrace{x \in(a b)^{*} a^{+}(b \mid c)}^{\text {regular constraints }} \wedge \underbrace{|x|=2|y|+1}_{\text {length constraints }}
$$

Length constraints:

- Needed for a tight integration within a DPLL(T) SMT solver
- Solved by translation of string solutions to a LIA formula
- Each feasible branch of the computation tree outputs language assignment to string variables
- Any combination of $w_{x} \in \operatorname{Lang}(x), w_{y} \in \operatorname{Lang}(y), \ldots$ is a solution (cf. monadic decompos.)
- compute the Parikh image

Adding Length Constraints [OOPSLA'23]

$$
\underbrace{x=y z}_{\text {equations }} \wedge \overbrace{x \in(a b)^{*} a^{+}(b \mid c)}^{\text {regular constraints }} \wedge \underbrace{|x|=2|y|+1}_{\text {length constraints }}
$$

Length constraints:

- Needed for a tight integration within a DPLL(T) SMT solver
- Solved by translation of string solutions to a LIA formula
- Each feasible branch of the computation tree outputs language assignment to string variables
- Any combination of $w_{x} \in \operatorname{Lang}(x), w_{y} \in \operatorname{Lang}(y), \ldots$ is a solution (cf. monadic decompos.)
- compute the Parikh image
- Variables appearing in length constraints need special handling

Adding Length Constraints [OOPSLA'23]

$$
\underbrace{x=y z}_{\text {equations }} \wedge \overbrace{x \in(a b)^{*} a^{+}(b \mid c)}^{\text {regular constraints }} \wedge \underbrace{|x|=2|y|+1}_{\text {length constraints }}
$$

Length constraints:

- Needed for a tight integration within a DPLL(T) SMT solver
- Solved by translation of string solutions to a LIA formula
- Each feasible branch of the computation tree outputs language assignment to string variables
- Any combination of $w_{x} \in \operatorname{Lang}(x), w_{y} \in \operatorname{Lang}(y), \ldots$ is a solution (cf. monadic decompos.)
- compute the Parikh image
- Variables appearing in length constraints need special handling
- similar to the alignment procedure of Norn ...
- ... but solve alignment only for length variables

Experimental Evaluation [OOPSLA'23]

	SyGus-QGEn (343)					NORN (1027)					Slent (1128)				
	TOs	Es	Us	Time	Time-TOs	TOs	Es	Us	Time	Time-TOs	TOs	Es	Us	Time	Time-TOs
Z3-NOODLER	0	0	0	5.7	5.7	0	0	0	18.7	18.7	7	0	0	982.3	142.3
CVC5	0	0	0	188.2	188.2	84	0	0	10883.3	803.3	28	0	0	4763.7	1403.7
Z3	0	0	0	34.2	34.2	127	0	0	15318.7	78.7	73	0	0	9313.0	553.0
Z3str3RE	1	0	0	163.9	43.9	133	0	0	15986.2	26.2	87	0	0	10457.3	17.3
Z3-Trau	2	41	0	6065.8	5825.8				N/A		5	*53	4	662.2	62.2
Z3STR4	0	0	0	65.9	65.9	75	0	0	9113.6	113.6	77	0	0	9271.5	31.5
OSTRICH	0	0	0	962.1	962.1	0	0	0	8985.7	8985.7	155	1	0	23547.0	4827.0
				(1976)				Leet	ODE (265				Kal	A (1943	
	TOs	Es	Us	Time	Time-TOs	TOs	Es	Us	Time	Time-TOs	TOs	Es	Us	Time	Time-TOs
Z3-NOODLER	0	0	0	36.2	36.2	35	0	0	4779.2	579.2	192	0	0	24226.9	1186.9
CVC5	0	0	0	12.1	12.1	0	0	0	149.3	149.3	6	0	0	1914.4	1194.4
Z3	33	0	0	4297.1	337.1	0	0	0	142.4	142.4	188	0	0	23418.5	858.5
Z3str3RE	58	0	0	8279.5	1319.5	2	0	190	275.3	35.3	132	0	8	16133.1	293.1
Z3-Trau	45	0	1	7827.6	2427.6	0	0	0	162.0	162.0	125	0	0	20587.7	5587.7
Z3STR4	22	0	0	3816.3	1176.3	2	0	2	400.9	160.9	132	0	46	17752.9	1912.9
OSTRICH	6	*5	0	9323.7	8603.7	185	26	0	33308.9	8108.9	305	0	0	88056.3	51456.3

- T/Os = timeouts (120s)
- time- $\mathrm{T} / \mathrm{O}=$ run time without timeouts
- time $=$ total run time in seconds
- best values are in bold

Comparison with CVC5 and Z3 on regex-heavy benchmarks

(a) Z3-Noodler vs. CVC5.

(b) Z3-Noodler vs. Z3.
benchmark automatark denghang stringfuzz sygus_qgen

Comparison with CVC5 and Z3 on equation-heavy benchmarks

(a) Z3-Noodler vs. CVC5.

(b) Z3-Noodler vs. Z3.

Virtual Best Solver

— $\quad \mathrm{z} 3$

- cVC5
_ Noodler
- cvc5+z3
- Noodler+cvc5 + z3
- Noodler+cvc5
(b) VBS on equation-heavy

Discussion

- Tight integration of word equations and regular constraints [FM'23].
- Extension to lengths and other predicates [OOPSLA'23].
- Can beat well established solvers
- can solve more benchmarks
- average time is low
- Often complementary to other solvers
- Preprocessing is important
- Need for efficient handling of automata \rightsquigarrow efficient automata library (MATA)

Ongoing work

- Disequalities
- can be rewritten to equations \rightsquigarrow many disadvantages (breaking chain-freeness, etc.)
- can be deferred to after stability and translated to LIA
- Transducers
- string \leftrightarrow integer conversion
- other constraints

